Transplanting cuttings by hand and robotics

Paul Fisher, pfisher@ufl.edu

Grower online survey on cutting transplant robots 2018

Thanks to our industry partners

Floriculture Research Alliance

Growers

- Dummen Orange
- Four Star (MI)
- Knox Horticulture (FL)
- Kube-Pak (NJ)
- Lucas (NJ)
- Mast Young Plants/Neal Mast (MI)
- Pleasant View Gardens (NH)
- · Rockwell Farms (NC)
- Speedling (FL, CA)
- Spring Meadow (MI)
- Vivero Internacional (Mexico)
- Walters Gardens (MI)

Allied

- AMA Horticulture
- Blackmore Co.
- Fine Americas
- · Greencare Fertilizers
- Griffin Greenhouse Supplies
- Klasmann-Deilmann
- Pindstrup
- · Premier Tech Horticulture
- Quality Analytical Labs
- Sun Gro Horticulture

Floriculture and Nursery Research Initiative

Key questions from 25 potential adopters

- What companies have already invested in this technology? Successes & challenges?
- Technical
 - Actual number of cuttings per hour?
 - Efficiently transplants small runs?
 - Adjusts to cutting variability?
 - Unrooted cutting (URC) specs?
 - What percent of our varieties will run?
 - · Easy to implement into existing systems?
 - How reliable (uptime) and accurate sticking achieved?
 - · Will URC dry out prior to sticking?
- Economic
 - Machine purchase cost?
 - Maintenance cost, issues, technical assistance, and access to parts?
 - Return on investment (ROI)?
- Anything better coming down the pipeline?

Survey methodology

- 14 large young plant operations in the U.S. surveyed
- Each company had at least \$1M in annual sales, transplanting 200,000 to 3M cuttings in their peak week of 2016

How do you figure out labor efficiency?

Labor analysis of peak week in one location

2,974,713 cuttings during peak week	Workers hours per week	Hourly Labor Cost	Labor Cost Per Week	Cuttings/worker hour
Receive, organize and deliver cuttings to transplant Line	495	\$11.47	\$5,678	6010
Fill trays with substrate	270	\$11.47	\$3,097	11017
Supervise transplant of cuttings	315	\$16.80	\$5,292	9444
Transplant cuttings into trays	3375	\$12.34	\$41,648	881
Move trays to greenhouse	495	\$11.47	\$5,678	6010
Total process	4950	-	\$61,392	601
Transplanting and transplanting supervising	3690	-	\$46,940	806
Other processes (Not transplanting)	1260	-	\$14,452	2361

Time and labor cost per cutting in one location

Labor Type	Seconds/Cutting	Cost/ cutting	% of Cost/cutting
Receive, Organize and Deliver Cuttings To transplant Lin	0.6	\$0.0019	10%
Fill Trays with Substrate	0.3	\$0.0010	5%
Supervise Transplant of Cuttings	0.4	\$0.0018	9%
Transplant Cuttings Into Trays	4.1	\$0.0140	70%
Move Trays to Greenhouse	0.6	\$0.0019	10%
Total process	6	\$0.0200	100%
Transplanting and Transplanting supervising	75%	79%	79%
Other processes (Not transplanting)	25%	21%	21%

Manual cuttings transplanted per hour

- Mean 897 (317 to 1473) cuttings/hour for the sticking task
- Mean 560 cuttings/hour for overall process

Labor hourly wage

- Mean hourly cost to business (wages, insurance, taxes, benefits): \$12.49
- Average hourly wage for seasonal workers: \$11.55 (range \$9.00 to \$13.53)
- Wage comparisons (2016) affects labor availability!
 - Workers without high school completion national average: \$13.51
 - Farmworker average in these areas: \$10.38 to \$13.75
 - Adverse wage (immigrant labor): \$10.70 to \$12.02

Labor cost per cutting for different tasks

- Mean: \$0.023 per cutting to receive cuttings through to place in greenhouse
- · Labor cost break down:
 - Transplanting cutting into tray 70% (\$0.0161)

Are these conditions you would like to work in?

Efficient work station

Optimize manual labor efficiency

- Let's not forget manual transplanting
- Wide range of productivity between companies & individuals
- Is this good technique?

Can we identify the best method, standardize, and provide training?

What can you do?

- 1. Optimize your manual process
 - Track individuals or teams (quantity & quality)
 - Get a lean consultant in to evaluate the process
 - Provide training
 - Develop standards and provide incentives
- 2. Evaluate labor cost of your manual process
- 3. Provide pay and conditions to attract & retain staff
- 4. Work with recruitment agencies...

Return on investment in robotics

Transplant Process: Automated Transplanting

Baseline scenario: cuttings transplanted per week

- 29.3M cuttings transplanted over 1 year
- Average of 6 growers, peak 2.1M cuttings per week

Baseline scenario with all manual transplanting

- 29.3 Million (29.3 M) cuttings transplanted
- Peak week: 59 FTE transplant 2.1M cuttings, planting 897 cuttings/hour
- Hourly wage: \$12.49 Labor cost: \$408,377
- Cost per cutting: \$0.014

ROI model with four robots

- Robot: 17.4 M cuttings transplanted per year (59% of total)
- Manual: 11.9 M cuttings transplanted per year
- Peak week robot cuttings: 0.6 M (29% of total peak week cuttings)
- Peak week manual cuttings: 1.5 M

Example assumptions for return on investment (ROI) model with four robots

Parameter	Assumption
Number of robots	4
Cost including installation & equipment	4 x \$125K = \$500K
Cuttings per hour per robot	2,000
Workers per robot	0.8
Maximum hours robot operated per week	76 (2 shifts)
Labor cost/hour for robot operator	\$17.80
Labor cost/hour for manual worker	\$12.49
Discount rate	5%
Useful life for equipment (years)	10

Impacts on labor and total cost

Peak week: 50 FTE

Impacts on labor and total cost

- Peak week: 50 FTE (saving 9 workers or \$87,488)
- Labor + machine cost per year with 4 robots: \$345,890 (saving \$62,488)
- Cost per cutting: robot \$0.010, less than the manual cost of \$0.014

For more information...

- hort.ifas.ufl.edu/training/ for online extension courses
 - "Costing & Profitability" begins September 2
 - Use "CULTIVATE19" code for 20% discount

Summary on ROI

- Discounted payback 3 years with these assumptions
- Factors that favor automation of transplanting plant cuttings:
 - Limited labor availability
 - Manual process is slow or uneven
 - High hourly wage
 - Long runs of few items (less change over time)
 - Transplanting throughout the year
 - Multiple shifts during peak

A customized analysis is needed for each company

Manual Sticking of Woody Cuttings

Manual Sticking Continuous Improvement (32 cell tray)

	2008	2009	2010	2011-12	2013-18	Total Gain
		Lean training		3 person team	Indexed sticking line	
Cuttings/man hour (32 cell tray)	768	864	960	1056	1248	63%-15 trays

^{*}Expected rate currently is 1248; incentives paid over this rate

ISO Group Machines

2016 - 1 machine trialed; soon had 4 Max rate 2200

2018 average rate for 32 cell trays =1571; expected rate = 1664

Line is run with 4-5 people (18 cell, 32, 72):

- Flat filler
- Operator
- 2 fixers/lay down
- +1 for 18 cell
- https://springmeadownursery.com/innovation/production-innovation/production-innovation/

Robotic Sticking of Cuttings

All cuttings are taken in house

Size parameters are critical

>55mm wide

Training the Computer

Pick point

Hourly Output

1 bar = 1 min

Productivity Killer: Fixing

Reducing Fixing

- Make cuttings to precise specifications; properly train up to 20 people cutting
- Grow plants with precise internode length
- Update files with current pictures
- Moister media

Improvements/Changes

Liquid hormone dip dispenser used infrequently . 20% rate. SOP foliar hormone post stick.

Two Robot Arms

Softwood head

part grab

Evergreen head-___20%

Bottom Line

- ISO average rate 2019 = 1536 stems
- Manual average rate 2019 = 1312 stems
- Average 224 (17%) more w/ISO.
- New facility in 2020
 - Longer infeed/outfeed to avoid flat "starving"
 - Pre-stick watering to keep cuttings upright
 - Sound deadening/cleaner environment

Transplanting Cuttings by Hand & Robot Mike Goyette, Pleasant View Gardens

- Over 35 million cuttings per year
 - Annuals
 - Perennials
 - Herbs
 - Shrubs
- 90% transplanted by hand
- 10% by ISO robot
- We run 2 shifts over a 12-15 week period at each facility in order to get the work done
- We employ over 60 people to stick cuttings during peak production weeks.
- Hourly rates jumped 20% this year and most likely will rise another 10% next year! Ouch!

Single Station

- Trays move to "sticker"
- Sticker applies labels and sticks
- Cuttings are brought to each station by line leaders
- Stickers do not move from their stations
- 800-1,000 cuttings per hour

PROVEN WINNERS' The #1 Plant Brand'

Progressive Sticking

- Smooth cadence of work makes for better consistency throughout the work day
- Place your fastest "sticker" at the beginning of each cell to set the pace

Purdue Pegboard Test

• Tool to help make decisions about potential sticking performance

Transplanting Cuttings by Hand

Tips & Suggestions

- 1. High volumes per variety.
- 2. Plan what will be stuck each day. Give easy to stick plants to your faster people.
- 3. Phase out multiple cuttings per cell whenever possible.
- 4. Returning personnel do what you can to keep productive seasonal workers coming back year after year.
- 5. Form relationships good people know other good people.
- 6. Job shadowing place new people alongside quality veterans.
- 7. Always keep "stickers" in motion bring work to them.
- 8. Track output by person or team, move ineffective workers to other jobs where they might be more productive.
- 9. Pay people what they're worth or pay them a bonus based on output. Fast stickers are driving down your costs, can you share the win with them and help retention?
- 10. Provide sufficient lighting and a comfortable environment Hawthorne effect.

ISO Robot - Transplanting Cuttings by Robot

- Up to 2,200 per hour per machine
- Learn what works well
- Calibrachoa
- Sutera
- Verbena
- Bidens
- Angelonia
- Browalia
- Lobelia
- Nemesia

ISO Robot - Transplanting Cuttings by Robot

- Spread cuttings out on the belt – toss like confetti
- Belt shakes when the cameras are having trouble identifying the cuttings
- The more the belt vibrates the slower the robot goes

ISO Robot - Transplanting Cuttings by Robot

ISO Cuttings Spec

- ¼" bare stem
- · Large leaves removed
- Not wet

ISO Robot - Transplanting Cuttings by Robot

ISO Robot - Transplanting Cuttings by Robot

ISO Robot - Transplanting Cuttings by Robot

Transplanting Cuttings – Displacing Labor

7.8

ISO Robot

0.75

Transplanting Cuttings by ISO Robot

Tips & Suggestions

- 1. Plant selection select plants that the robot can stick much faster than humans and plants that have enough volume to keep the robot at capacity.
- 2. Know your current manual sticking rates to make good choices.
- 3. Work with your cuttings suppliers to create ISO spec cuttings.
- 4. Utilize the ISO robot for as many hours and shifts as you can. In this model machine breaks even around 2.3 million cuttings.
- 5. As employee hourly rates rise the ISO robot breaks even sooner.
- 6. Having more than 1 robot can improve ROI by reducing robot ratio of 1:1.5.

Transplanting Cuttings by Hand & Robot

Thank You!

Mike Goyette Operations Manager Pleasant View Gardens

Advantages of AutoStix

- ▶ Uniformity
- ► Solves labor shortages
- ► Improves production processes
- ► More predictable productivity
- ► Improved counts and quality control
- ► Lowers sanitation risks

Bob Dickman, Dickman Farms

Advantage: Solves Labor Challenges

- Can you get the people you need for a short peak window?
- ► Machine replaces approximately 9 production employees (Stickers)
- Autostix doesn't call in sick or show up late
- More interesting/exciting to run an Autostix machine than stick cuttings

Advantage: Improves Production Processes

- ▶ Uniform planting depth
- ▶ Dibble not needed
- Strips are already tagged
- Watering in after sticking is more effective...soil stem contact
- Less cuttings falling out in transit to greenhouse
- ► Loading machine is easier than passing out cuttings
- Production runs always together

If Dickman did not have Autostix: Labor and trays Total amount of trays Total amount of trays Total 102 trays wk.4-14 Total 102 trays wk.4-14 Total 102 trays wk.4-14 Total 102 trays wk.4-14

Why Dickman's chose AutoStix

• 28.86% increase in Minimum wage over 4 years.

Genera	al Minimum V	lage Flate S	Schedule			
Location	12/31/16	12/51/17	12/31/18	12/31/19	12/31/20	8021"
NYC - Large Employers (of 11 or more)	511,00	\$13.00	\$15.00			
NYC - Small Employers (10 or less)	510,50	\$12.00	\$13,50	\$15,00		
Long Island & Westchester	510,00	\$11,00	\$12.00	\$13.00	\$14.00	\$15.00
Remainder of New York State	59.70	\$10.40	\$11.10	\$11.80	\$12.50	

- Available quality dependable seasonal labor
- AFWR rate \$13.82 NYS H2A program
- Current local temp agency rate \$18.00 plus time and ½ over 40 hrs \$27.00
- Production peaks and valleys
- Simplicity of machine and Product

