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ABSTRACT: Mitragyna speciosa (“kratom”) is used as a natural remedy for pain and management of opioid dependence. The
pharmacological properties of kratom have been linked to a complex mixture of monoterpene indole alkaloids, most notably
mitragynine. Here, we report the central biosynthetic steps responsible for the scaffold formation of mitragynine and related
corynanthe-type alkaloids. We illuminate the mechanistic basis by which the key stereogenic center of this scaffold is formed. These
discoveries were leveraged for the enzymatic production of mitragynine, the C-20 epimer speciogynine, and fluorinated analogues.

Mitragyna speciosa (“kratom”) is a tree of the Rubiaceae family.
Kratom consumption leads to stimulating effects at lower doses
and opioid-like effects at higher doses." Manual workers have
used it for centuries to endure heat and combat fatigue.””
Kratom is also consumed for the (self)treatment of pain, to
mitigate opioid withdrawal symptoms, and to treat depression;
however, rigorous clinical demonstration of kratom’s ther-
apeutic efficacy is still lacking." Because of its purported
analgesic properties, as well as for recreational purposes,
kratom is increasingly used worldwide and is consumed by
millions of people in the United States alone.”

The pharmacological effects of kratom have been linked to a
mixture of >S50 corynanthe- and oxindole-type alkaloids
(Figure 1ab).” Most notable among these are the cory-
nanthe-type alkaloid mitragynine (1) and the hydroxylated
derivative 7OH-mitragynine (2). Both 1 and 2 are nanomolar
partial agonists at the human y-opioid receptor (hMOR), and
2 was found to be ~10-fold more potent than morphine in
mice.”” Intriguingly, speciogynine (3), the C-20 epimer of
mitragynine (1), does not display agonist activity toward
hMOR, though speciogynine (3), unlike mitragynine (1), is a
smooth muscle relaxant. These differential bioactivities high-
light the importance of the C-20 stereochemistry in the
pharmacology of kratom alkaloids."’

Here, we leverage a multiomics approach to elucidate the
key biosynthetic steps that form the corynanthe-type scaffold
of kratom alkaloids. We report the discovery of two medium-
chain alcohol dehydrogenases (MsDCS1 and MsDCS2) along
with an enol O-methyltransferase (MsEnolMT) that converts
strictosidine aglycone (4) to either (20S)-corynantheidine
(5a) (the precursor to 1) or (20R)-corynantheidine (Sb) (the
precursor to 3). Rational mutagenesis of MsDCSI revealed key
amino acid residues that control the stereoselective reduction
at C-20. A precursor directed biosynthesis approach was then
used for the stereoselective production of 1 and 3, as well as
fluorinated analogues.

We first identified where these alkaloids accumulate in planta
by analyzing methanolic extracts of M. speciosa root, stem, bark,
and leaf tissue using targeted metabolomics (Figure 1c; Figures
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S1-S6). Consistent with literature reports'"'” the alkaloid
content in the leaves was higher than other organs, with
mitragynine (1), paynantheine (6), speciogynine (3), and
speciocilliatine (7) being the dominant products. Low levels of
70H-mitragynine (2), (20S)-corynantheidine (Sa), and
strictosidine (8) were also observed. Stem and bark showed
similar metabolic profiles, with 7 as the dominant alkaloid and
low quantities of 1 and 3 also observed. Notably, root tissue
was completely lacking in 1 and 3, with only 7, 8, and Sa
detected.

Strictosidine aglycone (4) is the central intermediate for
most monoterpene indole alkaloids, including 1, 3, and other
kratom-derived alkaloids. The biosynthetic pathway for 4 has
been elucidated in Catharanthus roseus,”> and we identified
orthologues of these biosynthetic genes in the kratom
transcriptome (Scheme 2a). Notably, although 1 and 3
accumulate primarily in leaf and stem, the strictosidine
aglycone (4) biosynthetic genes were preferentially expressed
in roots, suggesting that this organ is the primary site of
biosynthesis for the early pathway steps toward 1. Therefore,
either 1 and 3 are produced in the root and subsequently
transported to leaf/stem, or alternatively, a biosynthetic
intermediate of 1 and 3 is transported to the leaf/stem
where the final biosynthetic steps would take place.

Strictosidine aglycone (4) is a reactive intermediate that can
be reductively trapped into numerous isomers.' > One
isomer, dihydrocorynantheine (11ab), has the same scaffold
as 1 and 3, and is therefore a likely biosynthetic intermediate
for these alkaloids. Recently, we reported the discovery of a
medium-chain alcohol dehydrogenase from Cinchona pubes-
cens, dihydrocorynantheine synthase (CpDCS), that converts
strictosidine aglycone (4) to (20R)-dihydrocorynantheine
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Figure 1. (a, b) Representative kratom alkaloids. (c) TIC of kratom
leaf and root extracts. * observed in EIC.

(11b) during the biosynthesis of quinine (12) (Scheme la).'®
The structure of 11b was inferred based on (HR)MS/MS
experiments and by NMR characterization of the decarboxy-
lated product (20R)-dihydrocorynantheal (Figure $7).'¢ It
seemed logical that orthologous enzymes should catalyze the
reduction of strictosidine aglycone to the dihydrocorynan-
theine scaffold in kratom (Scheme 1b).'®'” Moreover, given
the presence of dihydrocorynantheine-like alkaloids with both
(20S)- and (20R)-stereochemistry in kratom, we further
hypothesized that kratom would have multiple DCS
orthologues with differing stereoselectivity.

To identify enzyme candidates from kratom that catalyze
formation of 11a or 11b from strictosidine aglycone (4), we
used the protein sequence of CpDCS to mine the kratom
transcriptome. From this process, 27 candidates that showed
homology to CpDCS and/or coexpressed with genes involved
in (8)-formation were expressed in Escherichia coli (Figures S8
and S9). To assay for enzymatic activity, strictosidine (8) was
deglycosylated in situ with strictosidine glucosidase from C.
roseus (CrSGD) and incubated with kratom reductase
candidates and NADPH. CpDCS, which afforded (20R)-
dihydrocorynantheine (11b), © was used as a positive control

Scheme 1. (a) Reduction of 4 by CpDCS and (b) Proposed
Pathway Toward Major Kratom Alkaloids
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(Scheme 2¢; Ty = 4.4 min; [M + H]* caled for C,;H,,N,0;,
355.2022; found, 355.2014).16 Two of the tested kratom
candidates, MsDCS1 and MsDCS2, also produced 11b
(Scheme 2c; Figure S10). Intriguingly, MsDCSI also yielded
a second product with the same HRMS ([M + H]" calcd for
C, H,,N,0,, 355.2022; found, 355.2015) and MS/MS
fragmentation pattern as 11b, but a different retention time
(T = 3.9 min; Scheme 2c; Figure S10). We assumed that this
product was (20S)-dihydrocorynantheine (11a), but due to
poor stability, this compound could not be characterized.
Subsequent O-methylation at C-16 of 1lab would yield
corynantheidine (Sab), which is the next predicted inter-
mediate in the biosynthesis of 1 and 3. To identify gene
candidates that catalyze O-methylation at C-16 of 1lab, we
identified annotated methyltransferase genes that coexpress
with MsDCS1 (r > 0.8, Pearson correlation coefficient). Five
purified enzyme candidates were assayed in vitro with
strictosidine (8), strictosidine glucosidase (CrSGD),
NADPH, SAM, and either CpDCS, MsDCS1, or MsDCS2. A
single enzyme, MsEnolMT (r = 0.96), showed methyltransfer-
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Scheme 2. (a) Expression Profiles of Identified Genes in Kratom;” (b) Proposed Mechanism for the Formation of the
Corynanthe-Type Skeleton; (c) EIC (m/z = 355) of Assays Featuring Combinations of 8, CrSGD, and MsDCS1/MsDCS2/
CpDCS; (d) EIC (m/z = 369) of Assays Featuring Combinations of 8, CrSGD, MsEnolMT, and MsDCS1/MsDCS2/CpDCS;
and (e) EIC (m/z 369) Corresponding to Transient Expression of CrSTR, CrSGD, MsDCS1/CpDCS, and MsEnolMT in
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“Expression levels are represented as FPKM of the M. speciosa transcriptome.

ase activity in all enzyme assays (Scheme 2d). Coincubation of
MsEnoIMT with MsDCS1 afforded two products with the
expected nominal mass of 368 corresponding to the
methylated product of 11ab (HRMS: [M + H]* caled for
C,H,N,05, 369.2178; found, 369.2164 and 369.2167). The
minor product (Ty = 4.9 min) eluted at the same retention
time and displayed identical MS/MS spectra compared to an
authentic standard of Sa (Figures S11 and S12),"* validating

that MsDCS1 generates (20S)-dihydrocorynantheine (11a).
The major product Sb (Ty = 5.4 min) displayed identical MS/
MS patterns to Sa (Figure S12), but different retention time.
This product has the same retention time and MS/MS pattern
as the product of CpDCS, which had been previously
established to have R stereoselectivity (Scheme 2¢,d)."¢
Moreover, the MS/MS and the retention time of the
decarboxylated major MsDCS1 product matched an authentic
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Figure 2. (3, b) Structural model of MsDCS1 in complex with NADPH and dehydrogeissoschizine (15). (c) Key active site residues directing the
stereoselectivity. (d) Sequence alignment between MsDCS1, MsDCS2, and CpDCS. (e, f) Levels of (20S)-5a and (20R)-Sb in mutants of
MsDCS1/CpDCS; displayed are EICs (m/z 369) corresponding to transient expression of CrSTR, CrSGD, and ADH mutants and MsEnolMT in

Nicotiana benthamiana.

standard of (20R)-dihydrocorynantheal (Figure $7).'°
M;sDCSI1 also showed R stereoselectivity (Scheme 2c).

The ratios of 11a and 11b produced by MsDCS1 varied
considerably among in vitro assays, suggesting that assay
conditions affect the stereochemical outcome. To corroborate
MsDCS1 activity, we transiently expressed MsDCS1 together
with CrSTR, CrSGD, and MsEnolMT in Nicotiana benthami-
ana leaves. Infiltration with tryptamine and secologanin (19)
[the precursors to strictosidine (8)] afforded reproducible
ratios of Sa and 5b, with Sa as the dominant product (Scheme
2e). Exchange of MsDCS1 with CpDCS afforded solely Sb, in
agreement with previous observations.

Formation of 1lab may likely proceed via an initial 1,4-
reduction of the @,f-unsaturated iminium dehydrogeissoschi-
zine (15), which can form in situ upon deglycosidation of 8
(Scheme 2b).'® The reduced intermediate 16 tautomerizes to
the iminium form, 17ab, upon protonation at C-20, after which
a second 1,2-reduction would occur at C-19. Protonation at C-
20 during tautomerization would therefore define the stereo-
chemical outcome. We hypothesized that differences within
the active site of these enzymes controlled the face of
protonation.

To identify candidate amino acid residues that direct the C-
20 stereochemistry, we generated a structural model of
MsDCS1 (Figure 2a—c).'””” Seven amino acids in the binding
pocket differentiate MsDCS1 from MsDCS2/CpDCS (Figure
2¢,d; Figure S13). These residues from MsDCS2/CpDCS were
introduced into MsDCS1 to swap stereoselectivity at C-20.
Assays were performed by transient expression of the resulting
mutants in tobacco leaves (together with CrSTR, CrSGD,
MSsEnoIMT, tryptamine, and secologanin; Figure 2e; Figure
S14). Mutagenesis of residues 295—298 (SGAS to ATGG) was
sufficient to invert the ratio between Sa and Sb (from ~74% Sa
in wild-type MsDCSI to <35% Sa in the mutant). In a septuple
mutant of MsDCS1 (TS3F, 1100M, N116S, SGAS295—
298ATGG), formation of the (20S)-isomer 5a was nearly
abolished (<5%). Similar results were observed in analogous
mutations in CpDCS, which forms the (20R) product Sb
(Figure 2f). In the septuple CpDCS mutant (FS3T, M100],
S116N, ATGG295—298SGAS), the amount of Sa changed to
~45% in the mutant compared to 0% in the wild type enzyme
(Figure 2f; compare to Figure S14 for additional mutations).
Mining of the kratom genome revealed that MsDCSI is the
only homologue harboring these residues at these positions, so
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we speculate that MsDCS1 is solely responsible for production
of corynanthe-type alkaloids with (20S)-stereochemistry in
kratom (Figure S15).

These seven amino acids may collectively affect the
orientation in which dehydrogeissoschizine (15) binds in the
enzyme active site, which would in turn control tautomeriza-
tion and protonation of 16 to either (20S)-17a or (20R)-17b
(Scheme 2b; Figure S16). The model of the active site did not
contain an amino acid that would be appropriately positioned
to catalyze this stereoselective protonation, suggesting that a
bound water molecule may be responsible, as previously
proposed for other monoterpene indole alkaloid reductases.”'
This mutational analysis lays the foundation for metabolic
engineering strategies to improve production of mitragynine
(1); for example, MsDCS2 could be knocked out or mutated in
kratom to generate plants with increased levels of alkaloids
with (20S)-stereoconfiguration.

Completion of mitragynine (1) and speciogynine (3)
biosynthesis requires methoxylation at C-9 of 5ab (Scheme
1b).** Since early pathway genes are expressed in roots, while 1
is found exclusively in leaves, it is difficult to predict where the
genes responsible for methoxylation would be located.
Therefore, we screened oxidases with a variety of expression
profiles. However, although 172 candidate oxidase genes were
assayed, none showed activity toward either Sa or Sb (Figures
S17 and S18). Attempts to use the fungal cytochrome P450
monooxygenase PsiH, another oxidase known to hydroxylate
this position of the indole moiety, also failed to hydroxylate Sa
or b (Figure $19).*

Therefore, we switched to a mutasynthetic strategy to
reconstitute mitragynine (1) biosynthesis. N. benthamiana
leaves were transiently expressed with CrSTR, CrSGD,
MsDCS1, and MsEnolMT and infiltrated with 4-methoxy-
tryptamine (18) and secologanin (19). Consistent with the
previously observed stereoselectivity of MsDCS1, this afforded
a mixture of 1 and 3, with 1 as the dominant product (Scheme
3ab). Exchange of MsDCS1 with CpDCS solely afforded
speciogynine (3). In vitro assays yielded similar results (Figure
$20).

Notably, fluorinated mitragynine analogues have enhanced
pharmacological activity.24 Therefore, we assessed the
potential for the biocatalytic production of fluorinated
analogues of 1 and 3. Infiltration of secologanin (19) and
either 4F-, SF-, or 6F-tryptamine (20—22), along with CrSTR,
CrSGD, MsDCS1, and MsEnolMT in N. benthamiana, afforded
compounds that corresponded to the expected fluorinated
analogues (23—28) as evidenced by HRMS (Scheme 3a,c;
Figures S$21-526). Although attempts to isolate these
compounds in quantities sufficient for NMR analysis failed,
this sets the stage for exploring more efficient yeast-based
strategies for mitragynine analogue engineering.

In conclusion, we elucidated the key enzymatic steps for the
production of corynanthe-type alkaloids in kratom. Muta-
genesis experiments suggest a mechanism that is responsible
for the control of the stereochemistry at the crucial C-20
position. These discoveries will enable targeted genome editing
in kratom to fine-tune alkaloid profiles. Given the recent
advent of yeast expression systems for the production of
monoterpene indole alkaloids,” we anticipate that these
enzymes will enable development of robust production
platforms for mitragynine, speciogynine, and related analogues.

Scheme 3. (a) N. benthamiana Infiltration Strategy; and (b,
c) EICs of Methanolic Extracts from the Transient
Expression of CrSTR, CrSGD, MsEnolMT, and Indicated
ADH Enzymes with Different Tryptamine Analogues
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