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Camelina sativa, a member of the Brassicaceae, is a low-cost, renewable oilseed

crop that produces seeds up to 40% oil by weight with high potential for use in

food, feed, and biofuel applications. Camelina seeds contain high levels of the

fatty acids a-linolenic acid (C18:3), linoleic acid (C18:2), oleic acid (C18:1), and

gondoic acid (C20:1), which have high nutritional and industrial value. The impact

of climate change, especially increased frequency and amplitude of heat waves,

poses a serious threat to crop productivity. In this study, we evaluated the effect

of elevated temperatures post-anthesis on the developing seeds of C. sativa and

performed physiological, morphological, and chemical characterizations at 7, 14,

21, and 28 days post-anthesis (DPA), as well as at maturity. While the seed oil

accumulation peaked at 21 DPA under control conditions, reaching 406mg/g dry

weight, under heat stress it was only 186mg/g. Physiologically, transpiration rate

(E) and internal CO2 concentration (Ci) increased between 2 to 9 days post-stress

imposition and overall net photosynthesis was impaired. Seed yield, seed weight,

and oil content reduced by 84.5%, 38.5% and 54.1% respectively. We

demonstrate that post-anthesis heat stress causes severe yield losses and

developmental plasticity in fatty acid accumulation in oilseeds.
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1 Introduction

Camelina sativa (L.) Crantz is an oil seed crop within the

Brassicaceae family and produces seeds with up to 40% oil by

weight (Rodrıǵuez-Rodrıǵuez et al., 2013; Berti et al., 2016).

Camelina is a low-cost renewable crop with high potential for use

as a biofuel, in addition to multiple uses in food, feed, and other

biological applications. Not only does camelina have a short life cycle

(85 to 100 days), it has the potential to expand crop production areas

due to its ability to grow in semi-arid and drought prone areas with

relatively infertile soils and minimal agricultural inputs (Vollmann

and Eynck, 2015; Bansal and Durrett, 2016; Malik et al., 2018;

Cappelli et al., 2019; Von Cossel et al., 2019; Zanetti et al., 2021).

Due to its high yield, high seed oil levels with favorable fatty acid

compositions, low production input costs, and amenability to genetic

engineering, camelina is viewed as an optimal oilseed crop for

biodiesel production (Stamenković et al., 2023). Seed development

in oil seed crops especially in Brassicaceae has been characterized by

three phases, I) growth phase, where rapid cell division occurs, II)

accumulation phase, where seed oil and protein deposits are rapidly

synthesized, and III) desiccation phase, where dehydration and seed

maturation occurs (Gurr, 1980; Rodrıǵuez-Rodrıǵuez et al., 2013).

The major components of camelina seed oil are acyl lipids

stored in the form of triacylglycerols (TAGs). TAGs are esters of

glycerol, with each hydroxyl group esterified with a fatty acid (FA)

at all three carbons. Due to their highly reduced state, TAGs

represent compact molecules for carbon and energy storage in

living organisms. De novo FA biosynthesis in plants occurs within

the plastids, where acetyl CoA is used as the carbon precursor for

the assembly of FAs. Acyl groups attached to acyl carrier proteins

are elongated by sequential addition of 2 C units (Li-Beisson et al.,

2013). The biosynthesis of TAGs occurs at the endoplasmic

r e t i cu lum by sequen t i a l a cy l a t i on and subsequen t

dephosphorylation of glycerol-3-phosphate (Li-Beisson et al.,

2013). Diacylglycerol represents an important branch point

between the synthesis of TAGs and membrane lipids. The last

step in TAG synthesis involves the acylation of diacylglycerol using

acyl CoAs or phosphatidylcholines as acyl donors (Li-Beisson et al.,

2013; Mueller et al., 2017). Phosphatidylcholine is not only a major

metabolic precursor for TAG synthesis but is also an abundant

membrane lipid. The major flux in TAG synthesis (>95%) is

associated with the diacylglycerol/phosphatidylcholine

intermediate pool (Pollard and Shachar-Hill, 2022). Camelina

TAGs have a high percent of polyunsaturated fatty acids (PUFAs)

such as w-3 FA, a-linolenic acid (C18:3, 19-43%) and w-6 FA,

linoleic acid (C18:2, 11-28%) (Vollmann and Eynck, 2015; Zanetti

et al., 2017; Anderson et al., 2019; Hotton et al., 2020; Zanetti et al.,

2021)) together constituting up to 50% of total fatty acids in

camelina seed, followed by monounsaturated FAs (MUFAs).

Climate change is typically accompanied by an increase in the

frequency, duration, and amplitude of droughts and heat waves

(Zandalinas et al., 2021). Temperature is a major environmental

factor that acts as an abiotic stressor; impacting plant growth and

posing a major threat to crop productivity. High atmospheric
Frontiers in Plant Science 02
temperatures have profound effects on the internal thermal

environment of plants, altering the major physiological processes

that dominate carbon fluxes, including photosynthesis,

photorespiration, and respiration. In addition, a suite of stress-

responsive organic compounds are formed under high

temperatures, which consume substantial amounts of carbon

(Dusenge et al., 2019). High temperatures have a detrimental effect

on plant development, particularly on reproductive stages (Chen

et al., 2016; Begcy et al., 2019b), impacting seed production and thus

crop productivity. At the physiological level, high temperatures

negatively affect the activity of photosynthetic enzymes (Jensen,

2000; Parrotta et al., 2020; Moore et al., 2021). Particularly,

RUBISCO activity and its affinity for CO2 decreases as temperature

increases, affecting the overall plant photosynthetic capacity (Salvucci

and Crafts-Brandner, 2004). Under heat stress (HS), an increased

transpiration rate in response to high temperature works as an

evaporative cooling mechanism to prevent thermal damage, a

necessary trade‐off with water conservation (Deva et al., 2020).

However, excessive loss of water through elevated transpiration

may surpass the plant’s water uptake and transport, leading to

wilting and closing of the stomata. The resulting decrease in CO2

uptake has a clear effect on the net photosynthetic rate, and when

accompanied by degradation of proteins and pigments due to heat

damage, electron transport is impaired and photosystem I (PSI) and

PSII are inactivated (Iqbal et al., 2021).

Plants have developed several adaptive responses to elevated

and varying temperatures, including improved water use efficiency,

decreased growth, early flowering, and modulation of plant

membranes and storage lipids by triggering lipid-dependent

signaling cascades (Zheng et al., 2011; Hou et al., 2016; Zhang

and Sonnewald, 2017). As a result, investigating plant physiological

responses to changing environmental factors, particularly from

floral transition to seed set, is integral in adapting crop plants to

combat for climate change. Specifically, high temperatures

drastically affect plant reproductive stages impacting seed set,

grain fill, and yield (Folsom et al., 2014; Lohani et al., 2022;

Magno Massuia de Almeida et al., 2023) in addition to seed

composition and quality (Elferjani and Soolanayakanahally, 2018;

Alsajri et al., 2020; Brock et al., 2020; Ortiz et al., 2022). Although

camelina has broad climatic adaptability, the resulting impact on

seed oil yield and fatty acid profiles is key to its utility as a

sustainable crop. Though limited agronomic studies have been

performed in camelina, it is clear that temperature impacts oil

yield and fatty acid composition of oil seeds (Vollmann and Eynck,

2015; Obour et al., 2017; Raziei et al., 2018; Krzyżaniak et al., 2019;

Brock et al., 2020). Floral development and seed yield are strongly

affected by temperature, with milder temperatures resulting in

higher yields (Krzyżaniak et al., 2019; Zanetti et al., 2021).

Furthermore, camelina accessions and cultivars grow in varying

climatic niches throughout the globe, and temperature was found to

elicit plasticity in seed oil in camelina (Brock et al., 2020) and other

oil seed crops (Izquierdo et al., 2016; Xu et al., 2016; Alsajri et al.,

2020; Nakagawa et al., 2020). C. sativa includes spring and winter

biotypes, with spring biotypes being the most studied thus far since
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winter biotypes required vernalization for flowering (Anderson

et al., 2018; Malik et al., 2018). The majority of camelina

accessions available and analyzed are spring biotypes (Hotton

et al., 2020) and biochemical characterization of seed oil from

multiple accessions indicated that the average FA profile has low

levels of saturated FAs and higher levels of PUFAs (Rodrıǵuez-

Rodrı ́guez et al., 2013; Hotton et al., 2020). Further, the

predominant FAs and their proportions in total oil are consistent

even among winter biotypes (Rodrıǵuez-Rodrıǵuez et al., 2013;

Hotton et al., 2020). In the present study, we have chosen Suneson, a

spring cultivar that is extensively used in biotechnology and genetic

studies (Na et al., 2018; Ozseyhan et al., 2018; King et al., 2019; Na

et al., 2019; Lhamo et al., 2020; Gomez-Cano et al., 2022; Bengtsson

et al., 2023). We performed physiological, morphological, and

chemical character izat ion of mult iple camel ina seed

developmental stages to investigate the impact of post-anthesis

HS on seed development and fatty acid accumulation.
2 Materials and methods

2.1 Plant material and growth conditions

Camelina sativa cv. Suneson plants were grown in a controlled

environment growth chamber facility starting from seed at

temperatures of 22/18°C (light/dark), 40% relative humidity with

a photon flux density (PPFD) of 300 µmol m-2 s-1 under a 16h

photoperiod. Flowers were marked at anthesis, and seeds were

harvested for analysis at 7 days post anthesis (DPA), 14 DPA, 21

DPA, 28 DPA, and at full maturity directly into liquid nitrogen and

stored at -80°C until processed. Mature seeds were collected when

siliques dried out, and before seeds shed upon pod dehiscence.

Anthesis was defined as a stage with fully opened flowers, with all

four petals in bright yellow color. Anthesis was marked for a total of

55 plants in the CO growth chamber. When the plants developed at

least 10-12 flowers at anthesis, half of the plants were either retained

at the CO or moved to the HS growth chamber for seed

development. The HS growth chamber was maintained at 34/24°

C (light/dark) with all the other environmental conditions identical

to the CO growth chamber. Five biological replicates for each stage

were collected for all analyses. In the case of 7 DPA and 14 DPA, a

combination of 3-5 plants were used to pool seeds as one replication

due to small size of the seed with high water content.
2.2 Plant physiological measurements

The uppermost, completely expanded leaf of plants under CO

and HS conditions was used to measure photosynthetic rate (A),

transpiration rate (E), intracellular CO2 concentration (Ci) and

stomatal conductance (gws) using an infrared gas analyzer (Li-COR

Li 6800, Lincoln, NE) as previously described (Begcy et al., 2019a).

Measurements were taken at the beginning of flowering and

extended over a period of 22 days, occurring at the following time

points: 0, 2, 5, 9, 12, 17, and 22 days from flower initiation.
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2.3 Analysis of seed fatty acid composition
and quantification

Seeds were removed from the siliques stored at -80°C and

lyophilized in a benchtop freeze-dryer (FreeZone, Labconco,

Kansas City, MO, USA) for 24h at ∼0.5mbar and -90°C. Seed

lipids were quantified by converting their FAs to the corresponding

fatty acid methyl esters (FAMEs) by transmethylation reaction

based on (Li et al., 2006). Using a homogenizer, ~20 mg of

lyophilized seeds were homogenized in 3ml toluene, combined

with 1ml of 5% (v/v) concentrated sulfuric acid in methanol, 25µl

0.2% BHT (butylated hydroxytoluene in methanol), and 10µl of

internal standard (IS) C17:0 TAG (5mg/ml) (Sigma# T2151). The

mixture was vortexed for 30sec, then heated at 90-95°C for 1.5h and

cooled to room temperature. 1.5ml of 0.9% NaCl (w/v) was added,

and FAMEs were extracted 3x with 2 ml hexane. Pooled organic

phases were then evaporated under N2, and dried FAMEs were

dissolved in 1ml of hexane. The FAMEs were analyzed by Gas

Chromatography (GC 6890 Series, Agilent, Wilmington DE) using

a DB-225MS column (30 m × 0.25 mm × 0.25 mm) at a flow rate of

0.8 mL/min. The GC conditions were as follows: initial temperature

of 120°C, then ramp to 220°C at a rate of 4°C/min, and hold for

35 min. An external standard (Supelco® 37 Component FAME

Mix, CRM47885, Sigma-Aldrich, St. Louis, MO) was used for peak

identification and C17:0 IS was used for quantification.
2.4 Determination of plant
growth parameters

Twelve plants were dedicated to determining plant growth

parameters, thus, excluded from any destructive harvesting of

developing seeds until the final harvest. Plants were grown in the

CO growth chamber until the plants had at least 10 flowers at

anthesis with multiple unopened flower buds. Half of the plants

were transferred to the HS growth chamber described above while

the rest remained under CO conditions. Six plants per treatment

were exclusively utilized to determine various growth parameters,

including total seed yield, 100 seed weight, above-ground biomass,

and to collect plant physiological measurements under CO and HS

conditions. Plants were harvested when siliques began to crack

open, and seeds reached maturity. The seeds were cleaned and

weighed for the total yield per plant. 100 seeds per plant were

manually counted and weighed to determine 100-seed weight. For

above-ground biomass measurements, upon reaching its final stages

of senescence wherein the plant material is completely dry, with all

seed pods dehisced, the whole plant above the soil surface was

collected into paper bags, air dried until completely dry, and dry

weight was measured per plant. Seeds from CO and HS treatments

were sown, with six biological replications each; 30 seeds per

replication were germinated in petri plates with moist filter paper

and wrapped in aluminum foil. The plates were kept under CO

conditions for a week and percentage germination was calculated as

percentage of number of seeds germinated (with radicle emergence

after one week) ÷ total number of seeds. A similar experiment with
frontiersin.org
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two repetitions was conducted where 30 visibly heat damaged and

regular HS seeds were germinated and percentage of germination

was calculated.
2.5 Microscopic analysis of camelina
siliques and seeds

Siliques and seeds harvested at 7, 14, 21, and 28 DPA of

camelina plants grown under CO and HS conditions were imaged

at 0.8-3X magnification on a Leica dissecting microscope (Wetzlar,

Germany) using a microsystems CMS camera calibrated with Leica

Application Suite X LAS X (3.7.4.23463).
2.6 Statistical analyses

Statistical analyses were performed either using JMP or R

packages rstatix, ggplot, and ggsignif. Physiological and FAME

composition data was subjected to a student’s t-test to compare

differences between plants grown under CO and HS conditions.

Differences were considered significant at P ≤ 0.05.
3 Results

3.1 Heat stress impairs physiological
performance of C. sativa plants

To study the effect of increased temperature on the developing

camelina siliques, we imposed a persistent HS environment for the

duration of reproductive development post-anthesis. A parallel set

of plants was maintained under optimal growth conditions and
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used as a control for all experiments. We quantified the

physiological responses and observed that HS strongly impacts

gas exchange parameters (Figure 1). Under CO (non-stressed)

conditions, camelina plants did not show variations in

photosynthetic rate (A), transpiration rate (E), intracellular CO2

concentration (Ci), and stomatal conductance (gws) (Figure 1).

Interestingly, a minor decline in photosynthesis was observed under

CO conditions on and after day 17, likely due to typical senescence

initiation (Figure 1A). In contrast, high temperatures decreased

plant overall photosynthetic rate (A; Figure 1A). We observed a

significant increase in transpiration rate (E) in response to high

temperatures, effective from day one after HS induction (P ≤ 0.05),

peaking on the seventh day (P ≤ 0.001), and declining thereafter

(Figure 1B). A similar pattern was observed for internal CO2

concentration (Ci) as well (Figure 1C). Additionally, a significant

increase in stomatal conductance (gws) (P ≤ 0.001) was detected

under HS, which mirrored transpiration (E) under HS (Figure 1D).

While CO plants had green leaves until four weeks following the

start of temperature treatments, HS plants showed accelerated

senescence, 10 days earlier than CO. At the end of reproductive

development, HS camelina plants showed almost a 90% reduction

in photosynthetic rate compared to CO plants. Taken together, our

results show that increased temperature during reproductive

development negatively affects the physiological status of camelina.
3.2 Morphological variation during C. sativa
post-anthesis seed development under
control and heat stress conditions

Under CO conditions, seed development of C. sativa progressed

from anthesis to maturity in approximately 35 days. Silique and

seed development occurred mainly during the first growth phase,
B

C D

A

FIGURE 1

Gaseous exchange measurements of camelina under control and heat stress. (A) Photosynthesis (A), (B) transpiration rate (E), (C) intercellular CO2

(Ci), and (D) stomatal conductance (gsw). CO-control, HS-Heat stress conditions. Measurements were performed using 300 Photosynthetic Photon
Flux Density (PPFD) at ambient CO2 (400 µmol mol-1) and 40% relative humidity. ns P > 0.05; *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001. The error bars
represent standard error of the mean.
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which lasted up to 14 DPA, after which most siliques had sizes

comparable to those at maturity (Figure 2A). The siliques remained

green in color until 28 DPA, after which slight browning began.

However, under HS conditions, silique development progressed

more rapidly, with browning starting at 14 DPA (Figures 2A, B).

While seed size between 14-21 DPA under CO is comparable to

mature seed (Figure 2C), under HS several seeds per plant had

visible heat damage at all stages, most prominently from 14 DPA

onwards (Figure 2D). In addition to impaired seed development,

the filling of siliques was also affected when developed under HS

resulting in hollower siliques, whilst CO siliques were full of

developing seeds (Figures 2A, B). Seed viability was evaluated for

HS and CO seeds by germination experiments. Approximately 8%

of HS seeds demonstrated visible heat damage with far darker

coloration and a more shriveled appearance (Figure 2D). Although

no significant overall differences in germination percentage was

observed for undamaged HS seeds and CO seeds, visibly heat-
Frontiers in Plant Science 05
damaged seeds (Figure 2D) had a 90% reduction in seed

germination compared to visibly normal HS seeds.
3.3 High temperature negatively affects
content and rate of fatty acid accumulation
in developing C. sativa seed

To identify the effects of HS on seed oil profiles, we quantified

FA accumulation throughout C. sativa seed development from 7

DPA, 14 DPA, 21 DPA, 28 DPA, and at maturity under CO and HS

conditions. The total FA content at 7 DPA under CO and HS

conditions was 64 mg/g seed and 49 mg/g seed, respectively

(Table 1) and not significantly different in this early stage of

development. However, the rate of FA accumulation varied

throughout seed development under both CO and HS conditions.

There was a continuous increase of FAs with no significant
FIGURE 2

Morphological variation of post anthesis siliques and seed development. (A) Siliques under control conditions (CO) (22/18°C light/dark), (B) Siliques
under heat stress (HS) (34/24°C light/dark), (C) CO seed, (D) HS seed. DPA, days post anthesis. Scale bar = 500µm.
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differences in seed FA content or composition under both

treatments until 14 DPA. However, under HS, 14 DPA seeds had

a slightly higher content of individual FAs detected when compared

to CO (Figure 3) with a visible heat damage on the seeds

(Figure 2D). FA accumulation in C. sativa seeds peaked at 21

DPA under CO conditions with 406 mg/g seed, and there was only a

slight increase of total FA after this stage until maturity (Figure 3;

Table 1). The impact of HS was most prominent at 21 DPA. Most

FAs had significantly lower accumulation by 21 DPA under HS

compared to CO, reducing the total seed FA content by 54%

(Tables 1, S1). Unlike CO, where most of the FA accumulation

occurred between 14 DPA and 21 DPA, there was a continued but

low rate of FA accumulation throughout the seed development

under HS after 14 DPA with the total FA content in HS matured

seed reaching to 309.5 mg/g compared to 418.8 mg/g in CO seed

(Figure 3; Table 1).
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3.4 Qualitative and quantitative variation in
C. sativa seed FA composition between
developmental stages under control and
heat stress conditions

In mature C. sativa seeds under CO conditions, we detected

33.3% a-linolenic acid, an w-3 FA (C18:3) and 19.2% linoleic acid

(C18:2), an w-6 FA, together constituting slightly more than half

(52.5%) of total FAs (Tables 1, S1). The next two major FAs, oleic

acid (C18:1) and gondoic acid (C20:1) constituted 13.6% and 14.9%

respectively. Altogether, in C. sativa mature seed, the four major

FAs, C18:3, C18:2, C18:1 and C20:1 constituted 81% of seed oil, and

their contents increased from 7 DPA to maturity. The FA

composition in the early stages of seed development is distinct

from mature seed even under CO conditions. For example, the

percentage of saturated FAs detected is the highest at 7 DPA
TABLE 1 Fatty acid composition and quantification at various seed developmental stages in mg g-1 from Camelina sativa dry seed.

FA 7DPA 14DPA 21DPA 28DPA Mature

mg/g
seed CO HS SS CO HS SS CO HS SS CO HS SS CO HS SS

C14:0
0.27 ±
0.1

0.13 ±
0.02 ns

0.17 ±
0.07

0.26 ±
0.03 ns

0.26 ±
0.08

0.2 ±
0.01 ns

0.23 ±
0.04

0.26 ±
0.01 ns

0.25 ±
0.03

0.3 ±
0.02 ns

C16:0
10.41 ±
1.09

9.78 ±
0.58 ns

15.36 ±
4.77

20.28 ±
2.29 ns

27.83 ±
3.79

15.8 ±
0.33 *

24.01 ±
3.56

18.4 ±
0.33 ns

25.52 ±
3.2

25.04 ±
0.88 ns

C16:1
0.55 ±
0.09

0.19 ±
0.08 *

0.25 ±
0.07

0.55 ±
0.07 *

0.39 ±
0.06

0.57 ±
0.02 *

0.43 ±
0.06

0.7 ±
0.02 **

0.44 ±
0.05

0.77 ±
0.03 ***

C18:0
3.95 ±
1.1

2.17 ±
0.25 ns

9.61 ±
3.17

7.73 ±
0.73 ns

15.49 ±
2.11

7.28 ±
0.2 **

12.28 ±
1.86

8.47 ±
0.29 ns

12.24 ±
1.6

11.74 ±
0.76 ns

C18:1n9c
10.52 ±
4.74

8.77 ±
1.34 ns

29.4 ±
8.93

38.66 ±
4.66 ns

48.43 ±
6.35

38.45 ±
1.32 ns

38.53 ±
5.76

46.76 ±
1.43 ns

59.93 ±
9.81

53.01 ±
1.24 ns

C18:2n6c
24.82 ±
4.72

20.05 ±
1.26 ns

46.31 ±
14.36

57.15 ±
8.36 ns

92.87 ±
11.45

55.56 ±
1.34 *

72.29 ±
10.81

65.28 ±
1.78 ns

79.93 ±
9.28

89.25 ±
2.39 ns

C18:3n3
9.33 ±
1.99

6.24 ±
0.65 ns

24.73 ±
9.31

31.27 ±
6.21 ns

118.17 ±
19.56

27.64 ±
1.12 **

123.26 ±
17.06

33.64 ±
0.9 ***

138.4 ±
15.17

62.86 ±
3.29 **

C20:0
1.36 ±
0.4

0.89 ±
0.18 ns

2.98 ±
1.33

6.58 ±
0.86 ns

10.47 ±
1.44

6.39 ±
0.19 *

8.87 ±
1.28

7.19 ±
0.25 ns

7.21 ±
0.76

9.17 ±
0.46 ns

C20:1
1.59 ±
1.42

0.21 ±
0.06 ***

11.24 ±
6.53

23.99 ±
4.32 ns

59.16 ±
8.61

23.66 ±
1.01 **

51.11 ±
6.98

28.96 ±
0.95 *

62.74 ±
7.91

36.87 ±
1.06 *

C20:2
0.24 ±
0.08

0.23 ±
0.06 ns

1.25 ±
0.52

2.75 ±
0.6 ns

8.41 ±
1.31

2.65 ±
0.12 **

7.8 ±
1.11

3.24 ±
0.12 **

9.01 ±
0.95

4.77 ±
0.16 **

C20:3
0.85 ±
0.37

0.1 ±
0.04 ns

0.96 ±
0.29

0.82 ±
0.19 ns

4.7 ±
0.92

0.75 ±
0.04 **

5.5 ±
0.74

1.48 ±
0.59 **

6.01 ±
0.63

1.72 ±
0.11 ***

C22:0
0.39 ±
0.09

0.37 ±
0.05 ns

0.74 ±
0.25

1.71 ±
0.2 *

2.35 ±
0.35

1.53 ±
0.04 *

2.08 ±
0.28

1.68 ±
0.05 ns

1.67 ±
0.2

2.47 ±
0.08 **

C22:1 0 ± 0 0 ± 0 ns
1.07 ±
0.96

3.95 ±
1.63 ns

14.65 ±
2.19

4.07 ±
1.03 **

13.75 ±
1.94

5.73 ±
0.23 **

12.18 ±
0.92

8.61 ±
0.34 **

C24:1 0 ± 0 0 ± 0 ns
0.57 ±
0.23

1.33 ±
0.32 ns

3.12 ±
0.54

1.83 ±
0.14 *

3.86 ±
0.55

1.99 ±
0.07 **

3.32 ±
0.24

2.89 ±
0.13 ns

Total FA
64.2 ±
12.7

49.1 ±
3.9 ns

144.6 ±
50.4

197 ±
29.9 ns

406.3 ±
57.4

186.4 ±
4.4 **

364 ±
51.6

223.8 ±
5.8 *

418.8 ±
49.9

309.5 ±
9.6 ns
frontiersi
DPA, Days Post Anthesis. The data represents the mean of n=5 ± SE. Asterisks denote statistically significant (SS) differences between the control (CO) and heat stress (HS) conditions at the same
seed developmental stage (ns P > 0.05; *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001) as determined by Student’s t tests. SE = standard error of the mean.
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(27.2%) and subsequently decreased as the seeds developed, with

the lowest levels detected at seed maturity (13.2%) (Table 1;

Figure 4). The two major saturated FAs at 7 DPA include

palmitic acid (C16:0, 17.4%) and stearic acid (C18:0, 6.02%),

constituting up to 82% of saturated FAs. However, as the seed

matured, reduction of saturated FAs and a corresponding increase

in the unsaturated FAs was observed. As the seed FA accumulation
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peaked at 21 DPA under CO, the composition of FAs also varied

with C18:3 and C20:1 FAs increased by five times, and C18:2 FAs

doubled compared to 14 DPA (Table 1). On the other hand, the

percentage of C18:1 FA in seeds dropped from 21.9% to 12.3%

within the same period.

High temperature during seed development resulted in both

qualitative and quantitative changes in FA accumulation. Some
FIGURE 3

Fatty acid accumulation in developing seed of C. sativa. Under control (CO) and heat stress (HS) conditions at 7, 14, 21, 28 days post anthesis and at
full maturity. The peak accumulation under CO conditions is designated with a dashed line. Asterisks denote statistically significant differences
between the control (CO) and heat stress (HS) conditions at the same seed developmental stage (*P ≤ 0.05, **P ≤ 0.01, and ***P ≤0.001) as
determined by Student’s t tests. The error bars represent standard error of the mean.
FIGURE 4

The percentage of Fatty acids (FAs) in developing seed of C. sativa categorized based on degree of saturation. Percentage of FAs categorized as
saturated FAs, mono-unsaturated FAs (MUFAs), poly-unsaturated FAs (PUFAs) under control (CO) and heat stress (HS) conditions at 7, 14, 21, 28 days
post anthesis and at full maturity. Percentage of Saturated FAs constituted sum of C14:0, C16:0, C18:0, C20:0, C22:0 FAs; % MUFAs constituted
C16:1, C18:1, C20:1, C22:1, C24:1; % PUFAs constituted C18:2, C18:3, C20:2, C20:3, C20:2. Asterisks denote statistically significant (SS) differences
between the control (CO) and heat stress (HS) conditions at the same seed developmental stage (ns P > 0.05; *P ≤ 0.05, **P ≤ 0.01, and ***P ≤

0.001) as determined by Student’s t tests.
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notable observations are a decrease in the percentage PUFAs and an

increase in percentage MUFAs under HS compared to CO in most

stages of C. sativa seed development. For example, at 21 DPA C18:3

FA is the major FA with 118.1mg/g in CO in contrast to 27.6mg/g

under HS. Although there is a continued but low rate of FA

accumulation under HS, we detected that C18:3 FA was

significantly lower under HS at all stages of seed development

until maturity, with C18:2 being the major FA in most stages

instead. The ratio of w-6 to w-3 is therefore elevated under HS

from 21 DPA (0.7, CO vs 2.0, HS) until maturity (0.57, CO vs 1.4,

HS) (Table 1). Other PUFAs, including C20:2 and C20:3 FAs also

showed a similar trend with reduced content under HS (Table 1). In

contrast, the percentage of C18:1 FA remained higher under HS in

all stages of seed development compared to CO. For example,

percentage of C18:1 FA under HS at 21 DPA, 28 DPA and

maturity are 20.6%, 20.8%, and 17.1% while under CO it is

12.2%, 10.8%, and 13.6% respectively.
3.5 Heat stress during seed development in
C. sativa impacts yield

High temperatures during seed development impacted the

overall growth of the camelina significantly (Figure 5A) with an

81.7% decrease in the above-ground biomass under HS compared

to CO (Figure 5B). There was a substantial 84.5% reduction in seed

yield in plants that continuously experienced heat during seed

development (Figure 5C). Furthermore, the seed weight of

camelina grown under HS had a 38.5% decrease in 100 seed

weight (Figure 5D).
4 Discussion

4.1 Heat stress impairs physiological
plant performance

Heat stress is one of the major environmental constraints for

plant growth and agricultural crop productivity (Al-Khatib and

Paulsen, 1990; Bita and Gerats, 2013). Photosynthesis is a heat-

sensitive cellular process in plants since high temperatures cause

damage to chloroplasts and mitochondria, inactivate RUBISCO,

and reduce chlorophyll content and photosystem II (PSII) efficiency

(Bernacchi et al., 2001; Bernacchi et al., 2003; Cen and Sage, 2005;

Sharkey, 2005; Hu et al., 2020). One of the common strategies used

by plants to tolerate HS conditions involves the adjustment between

photosynthetic and transpiration rates through the regulation of

stomata opening and closure. Stomata closure avoids water loss

through evaporation but simultaneously reduces CO2 intake and

thus photosynthetic rate (Greer and Weedon, 2012; Shen et al.,

2017). Some heat-tolerant plants, in contrast, can maintain their

physiological status for longer periods and thus keep open their

stomata and CO2 uptake while cooling their leaf surface at elevated

temperatures. This avoids, for instance, membrane and thylakoid

damage. Thus, tight physiological regulation is required to balance
Frontiers in Plant Science 08
the various effects caused by increased temperatures (Bita and

Gerats, 2013; Rajendra Prasad et al., 2021). Compared with HS

conditions, we observed that camelina plants grown under CO

conditions have higher photosynthetic rates. Interestingly, after two

days of heat treatment, higher transpiration (Figure 1B) and

stomatal conductance (Figure 1D) were observed in HS camelina

plants which indicates the initial reaction to open stomata to reduce

the high leaf temperature and higher CO2 uptake (Figure 1). Under

HS, a steady decline of photosynthesis was observed after the fifth

day and reaching almost non-detectable levels after day 15

(Figure 1A), this is also reflected in the rapid senescence of the

pods and developing seeds (Figure 2).

Reproductive development is one of the most sensitive

developmental stages to HS (Folsom et al., 2014; Begcy et al.,

2019a). Elevated temperatures are detrimental to the formation of

viable seeds due to the reduction of photo-assimilates, including

starch and monomers of carbohydrates required during seed

development as well as lipids used to form membranes (Zhuang

et al., 2022). The photosynthetic capacity of camelina during

reproductive development and seed filling stage greatly influenced

the accumulation of dry matter in the plant, total seed yield and oil

quality. Although physiological responses to increased temperatures

are developmental stage-dependent, similar responses to high

temperatures during seed development have been observed in

tomato (Solanum lycopersicum) (Parrotta et al., 2020), rapeseed

(Brassica napus) (Huang et al., 2019), and rice (Oryza sativa)

(Sailaja et al., 2015).
4.2 Heat stress causes accelerated and
altered seed development and quality

In this study we observed developmental changes in camelina

seeds exposed to HS, as well as corresponding variations in lipid

composition. Several aspects of plant reproduction are clearly

affected by heat, such as a decreased seed set (Figure 5) and

reduced seed size as shown by a significant decline in 100 seed

weight. Previous studies have established that while C. sativa seed

formation is completed by ~12 days after flowering, oil

accumulation occurs most rapidly between 12-16 and 27-28 days

after flowering and is mostly represented by the accumulation of

C18:3 FA (Rodrıǵuez-Rodrıǵuez et al., 2013; Abdullah et al., 2016).

Here, we show that seed growth under CO and HS, albeit to a lesser

degree, was visible between 7 and 14 DPA. We observed browning

of the CO siliques at 28 DPA, while under HS, browning was

observed two weeks earlier. This clearly indicates that the period of

seed development is reduced at high temperatures, thereby affecting

seed weight and total yield. This accelerated but defective

development is also reflected in the oil accumulation stage, which

occurs between 14 DPA and 21 DPA under CO, but between 7 and

14 DPA under HS (Figure 3; Table 1). In line with our observations

in C. sativa, decreased seed set, seed filling, and quality were also

reported in oil seed crops such as Brasicca napus, soybean, and

sunflower (Faraji et al., 2009; Izquierdo et al., 2016; Nakagawa et al.,

2020; Staniak et al., 2021; Mácová et al., 2022).
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4.3 Camelina sativa seeds exhibit altered
fatty acid composition under heat stress

FAs from C4:0 to C18:0 are produced de novo in plastids along

with mono-unsaturated FAs with Oleic acid (C18:1) being the major

product of plastidial fatty acid synthesis in many oilseed species (Li-

Beisson et al., 2013). Oil composition has been shown to be influenced

by abiotic stressors affecting the transport of fatty acids through various

organelles. Particularly, export from plastids to the endoplasmic

reticulum is affected, where oleic acid (C18:1) is converted into

linoleic acids (C18:2), which is further desaturated to form linolenic

acids (C18:3) (Ohlrogge and Browse, 1995). A decline in the level of

polyunsaturated fatty acids (i.e., C18:3) is associated with heat tolerance

in cultivars of soybean and peanut (Rustgi et al., 2021), and has been

shown to lead to improved heat tolerance in tobacco cells (Zhang et al.,

2005; Upchurch, 2008). In this study, the quantification of FAs was

performed based on lyophilized seed dry mass for greater bio

preservation of samples by eliminating exposure of seeds to air and

heat, which can lead to oxidation of fatty acids and degradation of
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PUFA (Zhuang et al., 2022). Under CO conditions, FA profile

exhibited a decrease in percentage of C18:1 and C18:2 from 14 DPA

onwards (Table S1). Correspondingly, there is an increase in the C18:3,

C20:1 and other longer chain FAs in later stages of seed development

(Table 1). Interestingly, products of FA elongase activity on MUFAs,

C20:1, C22:1, and C24:1 increase drastically from 14 DPA to 21 DPA,

after which changes are minor as observed previously in camelina

(Rodrıǵuez-Rodrıǵuez et al., 2013; Vollmann and Eynck, 2015;

Abdullah et al., 2016; Brock et al., 2020).

Under HS conditions, we observed plasticity in seed FA

accumulation with significant qualitative and quantitative

differences in composition in addition to a decrease in overall FA

yield. The composition of FA over development was reversed, with

the HS FA profile being more represented by C18:1 and C18:2 FAs,

with a decrease in trienoic FAs suggesting that further desaturation

of FAs is not preferred under HS. This observation is supported by

findings that FAD3 enzymes, involved in production of PUFAs, are

regulated in response to temperature, with protein degradation

occurring at higher temperatures (30°C) (O’Quin et al., 2010).
FIGURE 5

Effect of heat stress on plant growth and seed yield. (A) Camelina sativa cv. Suneson plants grown under control (CO) temperature of 22/18°C (light/
dark) throughout their lifecycle compared to plants subjected to heat stress (HS) at 34/24°C during seed development phase. (B) 100-seed weight,
(C) total seed yield, (D) Total above ground biomass. Asterisks denote statistically significant (SS) differences between the control (CO) and heat
stress (HS) conditions at the same seed developmental stage (*P ≤ 0.05, **P ≤ 0.01, and ***P ≤0.001) as determined by Student’s t tests. The error
bars represent standard deviations.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1284573
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nadakuduti et al. 10.3389/fpls.2023.1284573
Similarly, the plastid C18:2 desaturase, FAD8, has been shown to

undergo conformational destabilization at high temperatures of 27°

C (Matsuda et al., 2005). Altogether, heat exposure can directly

impact the accumulation of w-3 FAs by impacting enzymatic

activity. One factor to consider is the use of C18:3 FA in non-

storage metabolic products in plants via a biosynthetic shift toward

signaling. Besides being incorporated in TAGs for storage, linolenic

acid is a precursor of the phytohormone jasmonic acid (JA), a biotic

stress response signaling molecule which has also been shown to be

involved in seed development and abiotic stress response in

Arabidopsis thaliana (Mata-Perez et al., 2015; Balfagón et al.,

2019). In fact, fad3-2 fad7-2 fad8 Arabidopsis triple mutants

exhibited male sterility, but wild type phenotype was restored by

the application of JA (Wallis and Browse, 2002).

A decreased unsaturation index may be an advantageous response

for several reasons. First, changes in metabolism toward stress

tolerance could potentially occur via membrane modulation,

whereby an increase in saturated FAs leads to a more rigid

membrane. Reduction of trienoic fatty acids which are observed

under HS in several plant species has been shown to confer HS

tolerance to Arabidopsis double mutants fad7fad8 (plastidial C16:2

and C18:2 desaturases) (Murakami et al., 2000) and in fad5 and fad6

(plastidial C16:1 and C18:1 desaturases) (Wallis and Browse, 2002).

The increase in MUFAs C16:1, C18:1, 20:1, and C22:1, especially at

earlier developmental stages during seed formation, herein reported in

C. sativa seeds under HSmay be an adaptive response to HS, driven by

changes in plastidial FA biosynthesis. Remodeling of membranes at

this early developmental stage may aid the developing seed in

surviving temperature stress, albeit at the cost of slower FA

accumulation for energy storage. Interestingly, at 21 DPA, HS seeds

appear to recover C18:3 accumulation, as the proportion of C18:2 FA

decreases between 21 and 28 DPA, and both C18:1 and C18:2

proportion decrease between 28 DPA and maturity, while C18:3 FA

accumulation is occurring between these stages. We may therefore

infer that FA biosynthesis shifted to MUFA synthesis to protect cell

function and embryo development bymaintainingmembrane stability

and preventing FA oxidation, followed by a gradual return to PUFA

biosynthesis. This temporary shift in lipid metabolism was also

observed in the oil crop Ricinus communis (castor bean), which

underwent a significant decrease in the polyunsaturation index of

membrane lipids during HS, followed by a return to normal levels

once HS was relieved (Zhuang et al., 2022). On the other hand, earlier

sowing of camelina resulted in seeds with higher PUFA content due to

lower temperatures during seed filling (Righini et al., 2019). Taken

together, these findings support the phenotypic plasticity of camelina

lipid metabolism in response to high temperature.

Here, we have described the impact of post anthesis heat on

developmental FA accumulation in seeds in the biofuel crop C.

sativa cv Suneson. The empirical evaluation of physiological

performance of plants, and seed development under HS

conditions compared to control aids in identification of the FA

plasticity and time shift in peak FA accumulating phase in camelina

due to high temperatures. Understanding the effects of temperature

stress on production and quality of oil in a changing climate offer a

pathway to crop improvement not only in camelina but may also be

translated to other oil seed crops beyond Brassicaceae.
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SUPPLEMENTARY TABLE 1

Percentage fatty acid (FA) composition from Camelina sativa seeds at various
seed developmental stages calculated as % mean (n=5) of a FA ÷ sum of FAs ±

SE. control (CO) and heat stress (HS). Asterisks denote statistically significant (SS)

differences between the control (CO) and heat stress (HS) conditions at the
same seed developmental stage (ns P > 0.05; *P ≤ 0.05, **P ≤ 0.01, and ***P ≤

0.001) as determined by Student’s t tests. SE = standard error of the mean.
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Anderson, J. V., Horvath, D. P., Doğramaci, M., Dorn, K. M., Chao, W. S., Watkin, E.
E., et al. (2018). Expression of FLOWERING LOCUS C and a frameshift mutation of
this gene on chromosome 20 differentiate a summer and winter annual biotype of
Camelina sativa. Plant Direct. 2, 1–14. doi: 10.1002/pld3.60

Anderson, J. V., Wittenberg, A., Li, H., and Berti, M. T. (2019). High throughput
phenotyping of Camelina sativa seeds for crude protein, total oil, and fatty acids profile
by near infrared spectroscopy. Ind. Crops Prod. 137, 501–507. doi: 10.1016/
j.indcrop.2019.04.075
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Rodrıǵuez-Rodrıǵuez, M. F., Sánchez-Garcıá, A., Salas, J. J., Garcés, R., and Martıńez-
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